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Explanation of Maps

In the 1995 compendium, we presented maps showing the open reading frames (ORFs) and mRNA
transcripts of seven papillomaviruses (BPV-1R, HPV-5, HPV-8, HPV-11, HPV-16R, HPV-31, and HPV-
47). These maps can be obtained via the World Wide Web at http://hpv-web.lanl.gov/HTML_FILES/
HPVcompintro2.html#comp95. This year we present a new map for HPV-1a and updated maps for HPV-11,
HPV-16R, and HPV-31. Facing each map is a brief description of the  transcripts, and following the maps
is a list of references from which the maps were compiled.

In each map the significant ORFs are shown in their proper reading frames as colored rectangles. At
the upper left end of the rectangle are two numbers. The first corresponds to the nucleotide (nt) position of
the ORF start, the first nucleotide following a stop codon. The second number records the nt position of the
first ATG, which is also indicated by a dotted line within the rectangle. The position of the last nt in the stop
codon of each ORF is printed at the lower right corner of the rectangles. The rectangle's colored fill begins
at the ATG and extends to the end; thus it corresponds to the coding sequence, not the entire ORF. In the cases
where no ATG exists in the ORF, only one number is present in the upper left corner and the rectangle is
completely filled with color. Below the ORFs is a scale of the genome divided into thousands. On the scale
are placed the positions of promoters (represented by arrows) and the poly(A)  signals. The exact position of
the poly(A) signal is indicated. Located below the genome scale are diagrams of mRNA species, most of
which are spliced. The exons are illustrated by narrow black rectangles, while the introns are indicated by
black hairlines between. The numbers printed below the lines indicate the 5' and 3' termini of the RNAs, and
the 5' and 3' splice junction positions. The splice junction numbers give the position of the last nucleotide in
the exon before the splice and the position of the first nucleotide of the exon following the splice. Splice
junctions in parentheses were deduced from the genomic sequence and have not been confirmed by cDNA
sequencing. Where 5' or 3' ends of the RNAs are uncertain, no nt position is given. Superimposed on the exons
are colored rectangles representing the gene, or part thereof, coded by that portion of the exon. The coding
potential of each transcript is also listed at the right and includes all proteins which could be translated from
a given mRNA. In that list a ̂  symbol between two gene names (e.g., E1^E4) indicates a fusion product. The
* symbol indicates a truncated form of a protein. Alternative splicing can join the same upstream exon to
different downstream exons. The resulting truncated proteins are identified by roman numerals, such as E6*I,
E6*II, and E6*III as illustrated by HPV16R species B, C, and D.

Occasionally an intron occurs wholly within an ORF. In such cases it is possible that the normal
beginning of the ORF may be spliced to a downstream, in-frame portion of the orf. This results in a truncated
version of the complete protein, bearing a normal n-terminal portion (“head”) and normal c-terminal portion
(“tail”), but missing the middle. The E6*I protein from species B in HPV16R is an example.

Truncation can also occur when an upstream exon is spliced to a downstream exon such that the
downstream exon is translated in a reading frame that results in a stop codon soon being encountered. The
result is a protein composed of a head, translated in one of the “normal” ORFs such as E6 or E1, followed
by a short tail that is out of frame. We have chosen to draw this out-of-frame (OOF) tail as a narrower box
whose color corresponds to the main body of the protein. An example of this situation is the E6*II protein
from species F and J in HPV16R. Although the tail of this protein lies within the E6 region, it is not in the
E6 ORF, but is translated in a different frame which results in a stop codon being quickly encountered.

The next level of complexity is exemplified by the E1M fusion protein coded by species B in HPV1a.
Here the first 139 amino acids are normal E1 followed by 20 amino acids translated from RNA in the E2/E4
overlapping region of the genome. However, these 20 amino acids are neither E2 or E4 because they happen
to be translated in frame 2. In the same mRNA species (species B in HPV1a) the “converse” situation is also
illustrated; the E2C protein bears an OOF head (beginning at a methionine in the E1 region) joined to a normal
E2 tail. The narrow blue bar in exon 1 goes with the thick (normal) blue bar in exon 2. Ocassionally a short
normal head is joined to a short OOF tail, such as in the E1* protein of species C in HPV1a. We illustrate these
merely because they have the potential to be translated.
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HPV-16

HPV-16 mRNAs isolated from transfected cells and a variety of tumor cell lines and lesions
containing both extrachromosomal and integrated HPV-16 genomes have been analyzed in multiple
laboratories [6,7,14,17–19].   Viral/host chimeric mRNAs have been purposely omitted. All nucleotide
positions correspond to the revised HPV-16 sequence published in Part I of the 1995 compendium. Most
mRNA species were determined by RT-PCR, so the identity of the 5' and 3' ends are not known. However,
at least two promoters have now been identified for HPV-16. One promoter (P97) is active in cervical
cancers and cervical cancer-derived cell lines as well as in monolayer and organotypic raft cultures
containing extrachromosomal HPV-16 DNA [7,21]. Species A–K are most likely transcribed from this
promoter.  A differentiation inducible promoter (P670) has been identified by analysis of RNA obtained
from organotypic raft cultures containing extrachromosomal HPV-16 DNA [7]. This promoter has a
major start site mapped by primer extension analysis to around nt 670 and minor start sites at nt 693, 706,
713, and 766. It is likely that the E1^E4 mRNA (transcript L) is transcribed from this promoter. In
addition, in situ hybridization analyses have suggested that the most abundant transcripts in intraepithelial
neoplasias and invasive cancers are transcribed from this promoter [1]. An additional differentiation
inducible promoter may also exist with a start site around nt 480 [7]. The promoter responsible for the
transcription of the late mRNAs (species O–P) is not known. The early and late  polyadenylation signals
are located at nt 4215 and nt 7321, respectively [9,14].



m
R

N
A

 T
ranscript M

aps

III-5
A

U
G

 96

Long
Control
Region

P97 P670 Poly-A Poly-A

HPV16R

E6

65/83

559

E7

544/562

858

E1

859/865

2814

E2

2726/2756

3853

E4

3333

3620

E5

3808/3850

4101

4215

L2

4135/4237

5658

L1

5528/5561

7156

7321

1

2

3

F
R
A
M
E

0 1000 2000 3000 4000 5000 6000 7000 7906

Species Coding Potential

A
880 3358

E6,E7,E1 E4,E5

B
226 409 880 3358

E6*I,E7,E1 E4,E5

C
226 526 880 3358

E6*II,E7,E1 E4,E5

D
226 3358

E6*III,E5

E
226 409 880 2709

E6*I,E7,E2,E5

F
226 526 880 2709

E6*II,E7,E2,E5

G
880 2709

E6,E7,E2,E5

H
226 2709

E6*IV ,E2,E5

I
226 409 880 2582

E6*I,E7,E1C,E2,E5

J
226 526 880 2582

E6*II,E7,E1C,E2,E5

K
880 2582

E6,E7,E1C,E2,E5

L
880 3358

E1 E4,E5

M
880 2709

E1*,E2,E5

N
1302 3358

E2C,E5

O
1302 3358 3632 5639

E2M,L1

P
1302 5639

L1



m
R

N
A

 T
ranscript M

aps

III-6
A

U
G

 96

 HPV-31

HPV-31 mRNAs were investigated in CIN612 cells grown in monolayer cultures and in organotypic
raft cultures treated with TPA or C8 [8,12, Ozbun and Meyers, manuscript in preparation]. CIN612 cells
contain extrachromosomal HPV-31. Two promoters were identified by primer extension and RNAse
protection experiments.  P97 is active in both monolayer and organotypic raft cultures; P742 is active only
in differentiated raft cultures [8]. No promoter could be identified in the E6 ORF [8]. The mRNA
structures identified are shown in the facing map. Species A–E are presumably transcribed from P97,
although this has not been verified. It is  possible that one or more of these species is transcribed from a
promoter in the LCR. The 5' ends of species F–H have been mapped to P97 by nuclease S1 and ExoVII
analysis (Ozbun and Meyers, manuscript in preparation). Species I, J, and presumably L are transcribed
from P742. It is not know whether the 5' end of transcript K represents the 5' end of the mRNA or a splice
junction. Additional L1 mRNAs appear to be transcribed from P97, but the exact splice structure of these
mRNAs is unknown. Early mRNAs were  polyadenylated between nt 4099 and 4125 [8]. The exact sites
of polyadenylation at the late poly(A) site were not determined in these studies, but a putative
polyadenylation signal exists at nt 7227.
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HPV-11

HPV-11 mRNAs, isolated from genital condyloma acuminata and  experimental condylomatous
cysts implanted under the renal capsules of nude mice, have been analyzed by several laboratories
[2,3,10,15,16]. HPV-11 mRNAs expressed in cultured cells derived from laryngeal papillomas and
expressed from transiently replicating HPV-11 genomes in SCC-4 cells have also been analyzed [5,13].
The types of analyses include cDNA cloning (species A), electron microscopy analysis of R-loops
(species A–D, G, I, Q–S), and RT-PCR analysis (species C–G, I–P, R). The deduced mRNA structures
are presented in the HPV-11 map. The 5' ends of most mRNAs have not been mapped at the nucleotide
level. However, three promoters have been mapped by Smotkin et al. [20] using nuclease S1 analysis: the
E6 promoter initiates at nt 90, the E7 promoter at nt 264, and the E1 promoter at nts 674–714. Dilorenzo
and Steinberg [5) used an RNAse protection assay to confirm the locations of the E6 and E7 promoters,
but mapped a slightly broader distribution of 5' ends from the E1 promoter to nt 677–726. In addition, they
showed that the E1 promoter is differentiation specific.   Renaud and Cowsert [13] used a modified RACE
procedure to map a 5' end slightly further downstream to nt 743. The 5' end of the cDNA representing
species A is located at nt 716 [10], so this mRNA is presumably transcribed from the E1 promoter. Renaud
and Cowsert [13] also used 5' RACE to map additional 5' ends to the vicinity of nt 1374 (species E, K,
O), suggesting that there may be an additional promoter in this region. The early poly(A) site has been
identified from analysis of species A cDNAs; poly(A) addition sites were found at nt 4388, 4390, and 4392
[10]. The late poly(A) site has not been identified experimentally, but the L1 and L2 mRNAs are
presumably polyadenylated utilizing the poly(A) signal at nt 7457.
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HPV-1a

HPV-1a mRNAs from plantar warts and cultured keratinocytes infected with HPV-1 were analyzed
by electron microscopy of R-loops and by RT-PCR [4,11]. The deduced mRNA structures are shown in
the facing map. There are three putative promoters, only one of which has been accurately mapped. The
major promoter is located in the E7 ORF and presumably transcribes species A–C, E, and I. The most
abundant mRNA in the plantar wart is species A which encodes the E1^E4 mRNA [4]. A minor promoter
precedes the E6 ORF and presumably transcribes at least species D which can encode the E6 and E7
proteins. A very minor wart specific promoter was mapped to the URR by primer extension analysis and
has start sites from nt 7490–7524 and major start sites at nt 7509, 7510, and 7511 [11]. The late mRNAs
F–H are transcribed from this promoter. Species F, G, and H contain two weak translation initiation
codons in exon 1 which, in species G, are in frame with the L1 ORF and could therefore encode longer
L1 proteins. However, the most abundant L1 mRNA (E) is transcribed from the promoter in the E7 ORF.
The potential peptides starting in exon 1 of species F, G, and H, here called “X,”  are shown as gray boxes
because they correspond to none of the recognized ORFs of HPV1a. The early and late poly(A) sites have
not been determined experimentally. However, polyadenylation signals (AAUAAA) are present at nt
3984–3989, 7380–7385, and 7426–7431.
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